Meeting Banner
Abstract #1030

In Vivo Hyperpolarized 89Y Studies in a 9.4T Animal Scanner

Matthew E. Merritt1,2, M Mishovsky3,4, T. Cheng3, Ashish Jindal5, Zoltan Kovacs5, Craig Malloy5,6, Rolf Gruetter3,7, A Dean Sherry5,8, Arnaud Comment3,9

1Advance Imaging Research Center, UT Southwestern Med. Center, Dallas, TX, United States; 2Radiology, UTSW Medical Center, Dallas, TX, United States; 3Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Federal de Lausanne, Lausanne, Switzerland; 4Radiology, Universite de Lausanne, Lausanne, Switzerland; 5AIRC, UTSW Medical Center, Dallas, TX, United States; 6Cardiology, North Texas VA Hospital, Dallas, TX, United States; 7Radiology, Universite de Geneve, Geneva, Switzerland; 8Chemistry, University of Texas at Dallas, Richardson, TX, United States; 9Institute of Condensed Matter Physics , Ecole Polytechnique Federal de Lausanne, Lausanne, Switzerland


In vivo 89Y MRS of a rat kidney was performed in a 9.4 T animal scanner after infusion of hyperpolarized 89Y(DOTA) -. The hyperpolarized solution was prepared by dynamically polarizing the 89Y nuclear spins of the Y3+ complexes at 5 T and 1.05 K using the TEMPO free radical. The rapid injection of the solution led to subsequent large in vivo 89Y signal detected in the rat kidney. It was observed that the decay time of the signal is long enough to perform hyperpolarized 89Y in vivo studies.