Meeting Banner
Abstract #1868

In-Vivo Tracking of Single Phagocytic Cells in a Mouse Brain After Traumatic Brain Injury Using Micron-Sized Iron-Oxide Particles

T. Kevin Hitchens1,2, Parker H. Mills1,2, Lesley M. Foley1, John A. Melick3, Patrick M. Kochanek3,4, Eric T. Ahrens1,2, Chien Ho1,2

1Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, PA, United States; 2Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States; 3Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; 4Department of Critical Care Medicine and Anesthesiology, University of Pittsburgh, Pittsburgh, PA, United States


Cellular imaging is an important and growing field in magnetic resonance. The ability to non-invasively detect the trafficking and accumulation of cells in vivo has broad implications for both a better understanding of biological processes and the development of novel treatments for numerous conditions. Here explore using post processing techniques called Phase map cross-correlation Detection and Quantification or PDQ for detection and quantification of single MPIO-labeled cells in vivo. PDQ uses phase information to calculate a magnetic dipole moment for each detected cell. This information can be used to correlate labeled cell between serial scans and imaging methods.