Meeting Banner
Abstract #2547

Estimation of Rat Lung Surface to Volume Ratio and Xenon Diffusing Capacity Using Hyperpolarized 3He and 129Xe Gases

Matthew S. Fox1,2, Alexei Ouriadov1, William Dominguez-Viqueira1,3, Marcus Couch1,2, Giles E. Santyr1,3

1Imaging, Robarts Research Institute, London, Ontario, Canada; 2Physics and Astronomy Dept, University of Western Ontario, London, Ontario, Canada; 3Medical Biophysics, University of Western Ontario, London, Ontario, Canada

Hyperpolarized 129Xe is a novel gaseous contrast agent which also dissolves in the lung parenchyma and blood compartments, offering an interesting palette of potential biomarkers of pulmonary disease. 129Xe signals from the dissolved compartments have different chemical shifts and can be selectively saturated and allowed to recovery as a function of delay time as in the chemically selective saturation recovery (CSSR) technique. We collected CSSR data and 3D volumes from rat lungs in-vivo and explore both the Butler and Mansson model for estimations of surface to volume ratio, diffusing capacity and tissue transit time.