Meeting Banner
Abstract #2618

High Spatial and Temporal Resolution Perfusion Imaging of Hepatocellular Carcinoma with Time-Resolved 3DPR Using a 32-Channel Coil at 3T

Ethan K. Brodsky1,2, Walter F. Block2,3, William Schelman4,5, Scott B. Reeder1,2

1Radiology, University of Wisconsin, Madison, WI, United States; 2Medical Physics, University of Wisconsin, Madison, WI, United States; 3Biomedical Engineering, University of Wisconsin, Madison, WI, United States; 4Carbone Cancer Center, University of Wisconsin, Madison, WI, United States; 5Medicine, University of Wisconsin, Madison, WI, United States


Detection, characterization, and monitoring of hepatocellular carcinoma (HCC) is challenging due to its variable and rapid arterial enhancement. The ability to monitor changes in both morphology and perfusion is essential for evaluating the effectiveness of anti-angiogenic therapies. Multiple-phase CE-MRI has traditionally been used, but suffers from limited temporal resolution and an inability to consistently match acquisitions to the desired enhancement phase. We demonstrate the feasibility of contrast-enhanced isotropic-resolution 3DPR acquisition at 3T using a 32-channel coil with real-time monitoring that allows breath-holds to be matched to the desired enhancement phase and enables retrospective selection of the temporal window showing optimal lesion contrast.