Meeting Banner
Abstract #2844

Smoothing and Interpolation of In-Vivo B1+ Images

Andreas Petrovic1,2, Yiqiu Dong3, Stephen Keeling3, Rudolf Stollberger1

1Institute of Medical Engineering, University of Technology Graz, Graz, Austria; 2Ludwig Boltzmann Institute for Clinical Forensic Imaging, Graz, Austria, Austria; 3University of Graz


MR images at high field strengths (≥1.5T) suffer from artifacts caused by the inhomogeneity of the RF excitation field B1+ in the human body. Measurements of B1+ can be used for the correction of those artifacts. However, these B1+-images suffer from perturbations themselves and have to be smoothed and interpolated. In this work a new variational approach for smoothing is compared to a standard median filter for test images, as well as real in-vivo data. Simulations show that the variational approach combined with an outlier suppression algorithm outperforms the median filter in terms of accuracy and precision. In contrast to the median filter the variational approach produces very smooth results that are physically likely.