Meeting Banner
Abstract #3175

Cartilage Morphology at 3.0T: Assessment of Three-Dimensional MR Imaging Techniques

Christina A. Chen1, Richard Kijowski2, Lauren M. Shapiro1, Michael J. Tuite2, Kirkland W. Davis2, Jessica L. Klaers3, Walter F. Block3, Scott B. Reeder2,3, Garry E. Gold1

1Radiology, Stanford University, Stanford, CA, United States; 2Radiology, University of Wisconsin-Madison, Madison, WI, United States; 3Medical Physics, University of Wisconsin-Madison, Madison, WI, United States


We qualitatively and quantitatively compared 6 new three-dimensional (3D) magnetic resonance (MR) methods for evaluating knee cartilage at 3.0T: Fast-spin-echo Cube (FSE-Cube), Vastly undersampled isotropic projection reconstruction balanced steady-state free precession (VIPR-bSSFP), Iterative decomposition of water and fat with echo asymmetry and least-squares estimation combined with spoiled gradient echo (IDEAL-SPGR) and gradient echo (IDEAL-GRASS), Multi-echo in steady-state acquisition (MENSA), and Coherent Oscillatory State Acquisition for Manipulation of Image Contrast (COSMIC). Five-minute sequences were performed twice on 10 healthy volunteers, and once on 5 osteoarthritis (OA) patients. FSE-Cube and VIPR-bSSFP produced high image quality with accurate volume measurement of knee cartilage.