Meeting Banner
Abstract #4921

Sparse Parallel Transmission Using Optimized Sparse K-Space Trajectory by Simulated Annealing

Yong Pang1, Xiaoliang Zhang2,3

1Radiology and Biomedical imaging, University of California San Francisco, San Francisco, CA , United States; 2Radiology and Biomedical imaging, University of California San Francisco, San Francisco, CA, United States; 3UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, United States


The combination of parallel transmission and sparse pulse is able to shorten the excitation duration by using both the coil sensitivity and sparse k-space. In this work, a novel sparse parallel transmission design based on optimal k-space trajectory is proposed. After undersampling the k-space, the simulated annealing (SA) algorithm is applied to design a short k-trajectory traveling through all the sparse samples. Almost without sampling useless k-space data, this k-trajectory is shorter than conventional trajectories and thus shortening the pulse width. Bloch simulation of 90O excitation has been performed to demonstrate the feasibility of this method.