Meeting Banner
Abstract #0020

Remodeling of energy metabolism revealed by 31P magnetization transfer in a transgenic rat model of Huntington’s disease

Brice Tiret1,2, Maria-Angeles Carrillo-de Sauvage1,2, Huu Phuc Nguyen3,4, Nicole El Massioui5,6, Valérie Doyère5,6, Vincent Lebon1,2, Emmanuel Brouillet1,2, and Julien Valette1,2

1CEA/DSV/I2BM/MIRCen, Fontenay-aux-Roses, France, 2CNRS Université Paris-Saclay UMR 9199, Fontenay-aux-Roses, France, 3Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany, 4Centre for Rare Diseases, University of Tuebingen, Tuebingen, Germany, 5Paris-Saclay Institute of Neuroscience, Université Paris-Sud, UMR 9197, Orsay, France, 6Centre National de la Recherche Scientifique, Orsay, France

Localized 31P MRS with progressive magnetization transfer (MT) is performed in the BACHD transgenic rat model of Huntington’s disease to assess energy metabolism. Localized measurements of the ATP formation rate through creatine kinase and oxidative phosphorylation (ATPsynthase) are performed in the rat brain for the first time. Results show that ATPsynthase rate is reduced by a factor 2, which is partly compensated by higher cerebral concentrations of phosphocreatine to generate ATP via creatine kinase.

This abstract and the presentation materials are available to members only; a login is required.

Join Here