Meeting Banner
Abstract #0237

Association between cortical demyelination and structural connectomics in early multiple sclerosis

Gabriel Mangeat1,2, Russell Ouellette2,3, Constantina Andrada Treaba2,3, Tobias Granberg2,3, Elena Herranz2,3, Celine Louapre2,3, Nikola Stikov1,4, Jacob A. Sloane3,5, Eric C. Klawiter2,3,6, Caterina Mainero2,3, and Julien Cohen-Adad1,7

1Polytechnique Montreal, Montreal, QC, Canada, 2Athinoula A. Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States, 3Harvard Medical School, Boston, MA, United States, 4Montreal Health Institute, Montreal, QC, Canada, 5Beth Israel Deaconess Medical Center, Boston, MA, United States, 6Department of Neurology, MGH, Boston, MA, United States, 7CRIUGM, Functional Neuroimaging Unit, UniversiteĢ de MontreĢal, Montreal, QC, United States

Multiple sclerosis (MS) is a chronic disorder of the central nervous system characterized by diffuse abnormalities along white matter tracts and demyelination, including cortical lesions. In this study, we explored the interplay between cortical and brain structural networks integrity in a cohort of early MS subjects by combining quantitative mapping of T2* and T1 relaxation rates from 7T MRI acquisitions to measure cortical demyelination with diffusion imaging and graph theory to assess the structural brain architecture. Results suggest that motor, premotor and anterior cingulate cortices are affected simultaneously by cortical demyelination and connectomics alterations, at a very early stage of MS.

This abstract and the presentation materials are available to members only; a login is required.

Join Here