Meeting Banner
Abstract #0661

Linear Multi-scale Modeling of diffusion MRI data: A framework for characterization of orientational structures across length scales

Barbara Wichtmann1,2, Susie Huang1, Qiuyun Fan1, Thomas Witzel1, Elizabeth Gerstner3, Bruce Rosen1, Lothar Schad2, Lawrence Wald1,4, and Aapo Nummenmaa1

1A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States, 2Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, 3Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States, 4Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States

We propose a new analysis technique called Linear Multi-scale Modeling (LMM) for diffusion MRI data that enables detailed microstructural tissue characterization by separating orientation distributions of restricted and hindered diffusion water compartments over a range of length scales. We demonstrate the ability of LMM to estimate volume fractions, compartment sizes and orientation distributions utilizing both simulations as well as empirical data from one healthy subject and one tumor patient acquired using a human 3T MRI scanner equipped with a 300mT/m gradient system. Possible applications of our modeling framework include characterization of diffusion microstructural signatures of pathological vs. healthy tissue.

This abstract and the presentation materials are available to members only; a login is required.

Join Here