Meeting Banner
Abstract #1307

Disruption of functional connectivity of M1 and cerebellum in Multiple sclerosis: a long-range functional dysconnection?

Adnan A.S. Alahmadi1,2, Carmen Tur1, Matteo Pardini1,3, Peter Zeidman4, Rebecca S. Samson1, Egidio D'Angelo5,6, Ahmed T. Toosy1,7, Karl J. Friston4, and Claudia Angela Michela Gandini Wheeler-Kingshott1,6

1NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom, 2Department of Diagnostic Radiology, Faculty of Applied Medical Science, KAU, Jeddah, Saudi Arabia, 3Department of Neurosciences, Ophthalmology and Genetics, University of Genoa, Genoa, Italy, 4Wellcome Centre for Imaging Neuroscience, UCL, Institute of Neurology, London, United Kingdom, 5Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy, 6Brain Connectivity Center, C.Mondino National Neurological Institute, Pavia, Italy, Pavia, Italy, 7NMR Research Unit, Department of Brain Repair and Rehabilitation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom

This study investigated changes in functional and effective connectivity with M1 and anterior cerebellum using psychophysiological interaction (PPI) and resting-state fMRI (rsfMRI), applied to a motor task fMRI dataset in healthy subjects and multiple sclerosis (MS) patients. Results show that M1 in MS patients has reduced long-range connectivity to the contra-lateral hemisphere and the cerebellum and vice versa. Furthermore, MS patients lose visuo-motor integration with parietal areas. This is in contrast to rsfMRI functional connectivity, where connectivity of M1 to areas identified by the PPI network is increased. Results indicate a task-specific disconnection reflecting increased disability, associated also with low frequency maladaptive increased rsfMRI connectivity.

This abstract and the presentation materials are available to members only; a login is required.

Join Here