Meeting Banner
Abstract #1321

Non-invasive Assessments of Biomechanical and Biochemical Properties in Animal and Human Eyes using Multi-modal MRI

Leon C. Ho1,2, Ian A. Sigal1,3, Ning-juan Jan1,3, Chan Hong Moon4, Xiaoling Yang1, Yolandi van der Merwe1,3, Tao Jin4, Ed X. Wu2, Seong-Gi Kim4,5, Gadi Wollstein1,3, Joel S. Schuman1,3, and Kevin C. Chan1,3

1UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States, 2Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 3Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States, 4Department of Radiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States, 5Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea, Republic of

The microstructural organization and compositions of the corneoscleral shell are central to ocular biomechanics, and are important in diseases such as glaucoma and myopia. In this study, we showed that T2-weighted MRI, diffusion tensor MRI and magnetization transfer MRI can be used to detect and differentiate microstructural and macromolecular changes in freshly prepared ovine eyes under different abnormal conditions including intraocular pressure loading, cross-linking and glycosaminoglycans depletion. We also demonstrated the feasibility of assessing the human sclera with in vivo MRI. Multi-modal MRI may be useful for evaluating the biomechanical and pathophysiological mechanisms in the corneoscleral shell non-invasively and quantitatively.

This abstract and the presentation materials are available to members only; a login is required.

Join Here