Meeting Banner
Abstract #1951

Brain MR elastography with multiband excitation and nonlinear motion-induced phase error correction

Curtis L Johnson1, Joseph L Holtrop1,2, Aaron T Anderson3, and Bradley P Sutton1,2

1Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States, 2Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States, 3Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States

We propose a novel sequence for magnetic resonance elastography (MRE) of the brain based on multiband excitation and 3D encoding of the distributed slab with multishot spirals. This sequence allows access to optimal SNR efficiency and reduced distortions from field inhomogeneity, but also parallel imaging acceleration both in-plane and thru-plane without onerous artifacts and g-factor penalties. We also incorporate correction for nonlinear motion-induced phase errors through a kz-blipped spiral-in 3D navigator. In this abstract we demonstrate the performance of the sequence and its ability to capture whole-brain MRE data at 2x2x2 mm3 resolution in 3 minutes.

This abstract and the presentation materials are available to members only; a login is required.

Join Here