Meeting Banner
Abstract #1961

Poroelastic mechanical properties of brain tumors using intrinsic actuation MR elastography

Ligin Solamen1, Matthew McGarry1, Elijah Van Houten2, Jennifer Hong3, John Weaver1,4, and Keith Paulsen1,5

1Thayer School of Engineering, Dartmouth College, Hanover, NH, United States, 2Department of Mechanical Engineering, University of Sherbrooke, Sherbrooke, QC, Canada, 3Department of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States, 4Department of Radioogy, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States, 5Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States

Intrinsically actuated poroelastic MR elastography (IA-pMRE) is a technique which estimates tissue mechanical and hydrodynamic properties using measurements of displacement during the cardiac cycle, and does not require external vibration as in traditional MRE. Compared to conventional MRE, which obtains displacements in the range of 25-100Hz, IA-pMRE uses intrinsically generated low frequency (1-2Hz) displacements for elastography reconstruction. IA-pMRE was applied to 7 brain tumor patients and showed a significant difference in both the shear modulus and hydraulic conductivity of brain tissue compared to healthy tissue.

This abstract and the presentation materials are available to members only; a login is required.

Join Here