Meeting Banner
Abstract #1997

Spatiotemporal dynamics and patterns of cortical mean kurtosis and fractional anisotropy in the preterm brains

Tina Jeon1, Aristeidis Sotiras2, Minhui Ouyang1, Min Chen3, Lina Chalak4, Christos Davatzikos2, and Hao Huang1,5

1Radiology Research, Children's Hospital of Philadelphia, Philadelphia, PA, United States, 2Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, United States, 3Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX, United States, 4Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States, 5Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States

From early 3rd trimester to around birth, the cerebral cortex undergoes dramatic microstructural changes including dendritic arborization that disrupts the radial scaffold, a well-organized columnar organization. Decrease of cortical fractional anisotropy (FA) derived from DTI has been well documented. In this study, we hypothesized that non-Gaussian water diffusion properties (e.g. mean kurtosis or MK) from diffusion kurtosis imaging (DKI) offers unique and complementary information on cortical microstructural changes during this period. The spatiotemporal changes and patterns of cortical FA and MK from 32 to 41 postmenstrual weeks were revealed, demonstrating unique cortical MK maps and clustering patterns during preterm development.

This abstract and the presentation materials are available to members only; a login is required.

Join Here