Meeting Banner
Abstract #2203

Semi-automatic multi-feature bone segmentation in the pelvic region using Dixon MRI images acquired in 2 minutes: a preliminary result

Yi Gao1,2,3 and Chuan Huang4,5

1Biomedical Informatics, Stony Brook Medicine, Stony Brook, NY, United States, 2Applied Mathematics and Statistics, Stony Brook Medicine, Stony Brook, NY, United States, 3Computer Sciences, Stony Brook Medicine, Stony Brook, NY, United States, 4Radiology, Stony Brook Medicine, Stony Brook, NY, United States, 5Psychiatry, Stony Brook Medicine, Stony Brook, NY, United States

In simultaneous PET-MRI, attenuation correction is still a major hurdle due to the high attenuation of the bones and the lack of MR signal in conventional sequences. So far, several approaches have been proposed for bone attenuation correction, including bone segmentation and direct bone imaging. However, almost all available bone segmentation literatures focused on the head, which is arguably one of the easier regions because of its smaller field-of-view (FOV) requirement and the absence of major motion artifacts. Direct bone imaging is another promising approach which is accomplished by using zero-TE imaging, but its application in the body is challenging due to the larger FOV requirement and current instrumentation limitation such as peak B1. Recent research has demonstrated that PET quantitation can be largely improved even by assigning a fixed bone attenuation value (0.120 cm-1) to all bones. In light of this, we developed a technique that is able to produce good bone segmentation in the pelvic region using a 2-minute 6-echo DIXON MRI acquisition.

This abstract and the presentation materials are available to members only; a login is required.

Join Here