Meeting Banner
Abstract #2613

Feasibility Study: Free-Breathing 3-D CINE Imaging with Respiratory Gating Based on Pilot Tone Navigation

Jens Wetzl1,2, Lea Schroeder1, Christoph Forman3, Felix Lugauer1, Robert Rehner4, Matthias Fenchel3, Andreas Maier1,2, Joachim Hornegger1,2, and Peter Speier3

1Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 2Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 3Magnetic Resonance, Product Definition and Innovation, Siemens Healthcare GmbH, Erlangen, Germany, 4Magnetic Resonance, Research and Development, Hardware, Siemens Healthcare GmbH, Erlangen, Germany

Respiratory monitoring during continuous, free-breathing acquisitions is challenging. Using self-navigation, a respiratory signal can be derived from the imaging data, but requires frequent sampling of the k-space center. Pilot Tone navigation promises continuous respiratory monitoring independent of the imaging sequence. In this feasibility study, we compared both strategies for free-breathing 3-D CINE imaging. We found good agreement between both respiratory signals, and an excellent match in both reconstructed images and computed ventricular function parameters. Pilot Tone navigation can thus be considered an alternative to self-navigation, with the benefit of working with arbitrary imaging sequences.

This abstract and the presentation materials are available to members only; a login is required.

Join Here