Meeting Banner
Abstract #2993

Global Maxwell Tomography: a novel technique for electrical properties mapping without symmetry assumptions or edge artifacts

Jose E.C. Serralles1, Athanasios Polimeridis2, Manushka V. Vaidya3,4, Gillian Haemer3,4, Jacob K. White1, Daniel K. Sodickson3,4, Luca Daniel1, and Riccardo Lattanzi3,4

1Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, United States, 2Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russian Federation, 3Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States, 4The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, NY, United States

We introduce Global Maxwell Tomography (GMT), a novel volume integral equation-based technique for the extraction of electric properties from MR data. GMT is framed as an unconstrained optimization problem in which the error between measured and simulated B1+ magnitude maps is minimized. Due to its global nature, GMT is not subjected to edge artifacts. By using exclusively B1+ magnitude, GMT does not rely on symmetry assumptions to estimate B1+ phase. In one numerical example, three tumors were inserted into a head model, and starting from a tumorless initial guess, GMT accurately inferred the electrical properties and locations of these tumors.

This abstract and the presentation materials are available to members only; a login is required.

Join Here