Meeting Banner
Abstract #3447

Spherical Deconvolution of High-Resolution 7T Whole-Head Diffusion Magnetic Resonance Images shows reduced radial anisotropic diffusion in human primary somatosensory cortex

Ralf L├╝tzkendorf1, Robin M. Heidemann2, Thorsten Feiweier2, Michael Luchtmann3, Sebastian Baecke1, Joern Kaufmann4, Joerg Stadler5, Eike Budinger5, and Johannes Bernarding1

1Biometry and Medical Informatics, University of Magdeburg, Magdeburg, Germany, 2Siemens Healthcare GmbH, Erlangen, Germany, 3Department of Neurosurgery, University of Magdeburg, Magdeburg, Germany, 4Department of Neurology, University of Magdeburg, Magdeburg, Germany, 5Leibniz Institute for Neurobiology, Magdeburg, Germany

Diffusion anisotropy in cortical gray matter (GM) and adjacent white matter (WM) provides microanatomic information about the course of the neuronal structures within GM and when connecting to other brain regions. However, interwoven neuronal fiber orientations and complex folded structures render the analysis difficult. Ultra-high-field diffusion MR imaging (dMRI) overcomes these limitations as the improved SNR allowed acquiring 1.4 mm isotropic voxel with increased diffusion-weighting. Applying constrained spherical deconvolution (1) enabled resolving radial and tangential anisotropic diffusion in cortical gray matter confirming recent reports of reduced radial anisotropy in primary somatosensory cortex as compared to other cortical areas (2).

This abstract and the presentation materials are available to members only; a login is required.

Join Here