Meeting Banner
Abstract #4374

Intracranial vessel wall and cerebrovascular reactivity imaging provides evidence for mechanistic differences in atherosclerotic and non-atherosclerotic stenotic disease

Petrice M Cogswell1, L Taylor Davis1, Megan K Strother2, Carlos C Faraco1, Lori C Jordan3, Blaise deB Frederick4, Jeroen Hendrikse5, and Manus J Donahue1

1Radiology, Vanderbilt University, Nashville, TN, United States, 2DXP Imaging, Louisville, KY, United States, 3Neurology, Vanderbilt University, Nashville, TN, United States, 4McLean Hospital, Boston, MA, United States, 5University Medical Center Utrecht, Utrecht, Netherlands

No study to date has assessed the relationship between intracranial vessel plaque and wall thickening and its impact on tissue-level function. A novel intracranial vessel wall imaging protocol and BOLD imaging were applied in patients with intracranial stenosis secondary to atherosclerosis and moyamoya disease (non-atherosclerotic stenosis). The time of maximum correlation of BOLD data with the applied stimulus, the CVR time, calculated using a novel time regression technique, is prolonged in vascular territories with a proximal vessel wall lesion for both atherosclerosis and moyamoya patients. The maximum z-statistic, a qualitative metric of CVR, is decreased in vascular territories with a proximal vessel wall lesion in moyamoya patients only.

This abstract and the presentation materials are available to members only; a login is required.

Join Here