Meeting Banner
Abstract #0050

The potential for gas-free measurements of absolute oxygen metabolism during both baseline and activation states in the human brain

Eulanca Y. Liu1,2, Jia Guo3, Aaron B. Simon4, Frank Haist5, David J. Dubowitz2,6, and Richard B. Buxton2,6

1Neurosciences Graduate Program, Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, United States, 2Center for Functional MRI, University of California, San Diego, La Jolla, CA, United States, 3Radiology, Stanford University, Stanford, CA, United States, 4Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States, 5Psychiatry, Center for Human Development, University of California, San Diego, La Jolla, CA, United States, 6Radiology, University of California, San Diego, La Jolla, CA, United States

We tested noninvasive methods to measure absolute oxygen metabolism (CMRO2) in both baseline and activation states without the use of special gases: VSEAN to measure baseline O2 extraction fraction (OEF), and FLAIR-GESSE to measure R2’ to estimate the scaling parameter M. Primary findings were: M derived from R2’ had less variation across subjects compared to hypercapnia-derived M; OEF values were in good agreement with previous PET findings; and, variation of baseline CBF/CMRO2 coupling across subjects does not follow activation coupling, suggesting different mechanisms may be involved. These results support the potential of gas-free methods for quantitative physiological measurements.

This abstract and the presentation materials are available to members only; a login is required.

Join Here