Meeting Banner
Abstract #0280

The Rate of Hyperpolarized [1-13C] Pyruvate to [1-13C] Lactate Conversion Distinguishes High-Grade Prostate Cancer from Low-Grade Prostate Cancer and Normal Peripheral Zone Tissue in Patients

Natalie Korn1,2, Peder EZ Larson1,2, Hsin-Yu Chen1,2, Jeremy Gordon1, Robert A Bok1, Mark VanCriekinge1, James Slater1, Rahul Aggarwal3, Matthew Cooperberg3, Romelyn Delos Santos1, Justin Delos Santos1, Jeffry Simko4, Susan M Noworolski1,2, Daniel B Vigneron1,2, and John Kurhanewicz1,2

1Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, United States, 2The Graduate Group in Bioengineering, Universities of California at Berkeley and San Francisco, Berkeley and San Francisco, CA, United States, 3Urology, University of California at San Francisco, San Francisco, CA, United States, 4Pathology, University of California at San Francisco, San Francisco, CA, United States

The accurate discrimination of aggressive from indolent prostate cancer at diagnosis remains a pressing clinical need. High spatial and temporal resolution 3D dynamic hyperpolarized 13C MRSI has previously demonstrated the ability to correlate hyperpolarized (HP) [1-13C]pyruvate to [1-13C]lactate conversion, kPL, with cancer grade in murine models. This initial analysis of patients studies enrolled in a phase II pre-prostatectomy clinical trial demonstrated for the first time that maxmium kPL (kPLmax) is significantly elevated in high-grade prostate cancer versus both normal (p=0.0003) and low-grade disease (p=0.034).

This abstract and the presentation materials are available to members only; a login is required.

Join Here