Meeting Banner
Abstract #1096

A compartment based model for non-invasive cell body imaging by diffusion MRI

Marco Palombo1, Noam Shemesh2, Andrada Ianus1,2, Daniel C. Alexander1, and Hui Zhang1

1Computer Science Department and Centre for Medical Imaging Computing, University College London, London, United Kingdom, 2Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal

This study aims to open a new window onto brain tissue microstructure by proposing a new technique to estimate cell body (namely soma) size/density non-invasively. Using Monte-Carlo simulation and data from rat brain, we show that soma’s size and density have a specific signature on the direction-averaged DW-MRI signal at high b values. Simulation shows that, at reasonably short diffusion times, soma and neurites can be approximated as two non-exchanging compartments, modelled as “sphere” and “sticks” respectively. Fitting this simple compartment model to rat data produces maps with contrast consistent with published histological data.

This abstract and the presentation materials are available to members only; a login is required.

Join Here