Meeting Banner
Abstract #3162

Acute changes in rat brain metabolism after intravenous administration of alcohol, cocaine, and nicotine: A simultaneous PET/MR study with dynamic 1H-MRS and continuous infusion 18FDG.

Bart de Laat1,2, Akila Weerasekera1,3, Gwen Schroyen1,3, Cesar Molinos4, Uwe Himmelreich1,3, Cindy Casteels1,2, Koen Van Laere1,2, and Willy Gsell1,3

1KU Leuven – University of Leuven, MoSAIC, Molecular Small Animal Imaging Center, Leuven, Belgium., Leuven, Belgium, 2KU Leuven – University of Leuven/University Hospital Leuven, Division of Nuclear Medicine, Department of Imaging and Pathology, Leuven, Belgium., Leuven, Belgium, 3KU Leuven – University of Leuven, Biomedical MRI unit, Department of Imaging and Pathology, Leuven, Belgium, Leuven, Belgium, 4Bruker BioSpin, Preclinical Imaging NMI, Valencia, Spain

We have combined PET imaging with continuous 18F-deoxy-glucose PET and dynamic 1H-MRS focused on the prefrontal cortex in a rodent model of substance abuse. During imaging, animals received an intravenous injection of saline, alcohol, cocaine, or nicotine. Cocaine administration reduced the regional cerebral metabolic rate of glucose (rCMRGlu) as measured by PET, but increased prefrontal glucose and creatine levels as measured with dynamic MRS. Furthermore, alcohol administration significantly influenced the prefrontal concentration of ethanol, glucose, creatine, and glutamate. Finally, our data show that alcohol induces a transient decrease in prefrontal glutamate coinciding with the peak in ethanol concentration.

This abstract and the presentation materials are available to members only; a login is required.

Join Here