Meeting Banner
Abstract #3397

Optimal control based design of parallel transmission RF pulses with minimum local SAR

Armin Rund1, Christoph Stefan Aigner2, Lena Nohava3, Roberta Frass-Kriegl3, Elmar Laistler3, Karl Kunisch1,4, and Rudolf Stollberger2

1Institute for Mathematics and Scientific Computing, University of Graz, Graz, Austria, 2Institute of Medical Engineering, Graz University of Technology, Graz, Austria, 3Division MR Physics, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria, 4Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria

An optimal control framework for designing parallel transmission RF pulses and gradient shapes is introduced. The optimal control model includes technical constraints and a local SAR model based on the Q-matrix formalism. Second-order optimization methods give RF pulses with enhanced homogeneity of the excitation pattern and/or decreased local SAR. The optimized results are tested in numerical experiments and validated with numerical electromagnetic simulations.

This abstract and the presentation materials are available to members only; a login is required.

Join Here