Meeting Banner
Abstract #3524

Investigating microscopic diffusion anisotropy in the human kidney using multidimensional diffusion encoding

Fabio Nery1, Filip Szczepankiewicz2,3, João P. de Almeida Martins4,5, Matt G Hall1, Isky Gordon1, David L Thomas6,7, and Chris A Clark1

1Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom, 2Radiology, Brigham and Women’s Hospital, Boston, MA, United States, 3Harvard Medical School, Boston, MA, United States, 4Physical Chemistry, Lund University, Lund, Sweden, 5Random Walk Imaging AB, Lund, Sweden, 6Leonard Wolfson Experimental Neurology Centre, UCL Institute of Neurology, Queen Square, London, United Kingdom, 7Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London, United Kingdom

Diffusion tensor imaging (DTI) has been widely used to provide tissue microstructure measures such as fractional anisotropy (FA). Advances in diffusion acquisition methods (e.g. efficient spherical tensor encoding) have enabled more specific microstructural parameters to be derived, including microscopic fractional anisotropy (µFA). This work focused on extending our initial observation of µFA in the kidney through a detailed analysis of the linear and spherical diffusion encoding in healthy subjects, by comparing conventional FA to the µFA in human kidneys, and investigating the technical limitations of the current approach.

This abstract and the presentation materials are available to members only; a login is required.

Join Here