Meeting Banner
Abstract #4446

Improvement of Glutamate Chemical Exchange Saturation Transfer (GluCEST) Imaging in a Rat Model of Epileptic Seizure Using Retrospective Motion Correction

Dong-Hoon Lee1, Do-Wan Lee2, Jae-Im kwon3, Chul-Woong Woo3, Sang-Tae Kim3, Jin Seong Lee4, Choong Gon Choi4, Kyung Won Kim4, Jeong Kon Kim4, and Dong-Cheol Woo3,5

1Faculty of Health Sciences and Brain & Mind Centre, The University of Sydney, Sydney, Australia, 2Center for Bioimaging of New Drug Development, and MR Core Laboratory, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea, Republic of, 3MR Core Laboratory, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea, Republic of, 4Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea, Republic of, 5Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea, Republic of

GluCEST is a novel molecular MR imaging technique to detect glutamate in the brain parenchyma by measuring the exchange of glutamate amine protons with bulk water. However, a disadvantage of CEST imaging is the relatively long scan time required to collect the data while varying the resonance frequency around the water. In this abstract, we describe the application of a retrospective motion correction approach using a gradient-based motion correction (GradMC) algorithm to CEST data for investigating the feasibility of motion correction, using an epileptic seizure rat model with head motion. Our results clearly show that the GradMC can be used in CEST imaging to efficiently correct for motion.

This abstract and the presentation materials are available to members only; a login is required.

Join Here