Meeting Banner
Abstract #4925

Characterization of Bias in Quantitative Susceptibility Mapping with Anisotropic Imaging Resolution: Studies in a Numerical Phantom, 3D Printed Liver Phantom, and In Vivo Patient Scans

Ante Zhu1,2, Timothy J. Colgan2, Scott B. Reeder1,2,3,4,5, and Diego Hernando2,3

1Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States, 2Radiology, University of Wisconsin-Madison, Madison, WI, United States, 3Medical Physics, University of Wisconsin-Madison, Madison, WI, United States, 4Medicine, University of Wisconsin-Madison, Madison, WI, United States, 5Emergency Medicine, University of Wisconsin-Madison, Madison, WI, United States

Quantitative susceptibility mapping (QSM) is a promising technique for measuring iron concentration in patients with liver iron overload. In liver QSM, the constraints of scan time in a breadth-hold and the requirement of a short first echo time lead to limited imaging resolution, with anisotropic voxels. In this work, we characterized bias in liver QSM with anisotropic imaging resolution in simulation, a 3D printed liver phantom and patients. Our study shows that resolution-induced bias is related to the downsampling direction and is spatially-varying. In vivo results suggest the liver imaging resolution along the left-right dimension may affect liver susceptibility measurements.

This abstract and the presentation materials are available to members only; a login is required.

Join Here