Meeting Banner
Abstract #0712

The impact of axon orientation dispersion and 3D diameter variations on the transverse apparent diffusion coefficient

Mariam Andersson1,2, Jonathan Rafael-Patino3, Hans Martin Kjer1,2, Vedrana Andersen Dahl1, Alexandra Pacureanu4, Martin Bech5, Anders Bjorholm Dahl1, Jean-Philippe Thiran3,6, and Tim B. Dyrby1,2
1Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark, 2Danish Research Centre for Magnetic Resonance, Hvidovre, Denmark, 3Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 4The European Synchrotron, Grenoble, France, 5Department of Medical Radiation Physics, Clinical Science, Lund University, Lund, Sweden, 6Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland

We extract the orientation dispersion (OD) and 3D axon diameter variations of long axons (>100 µm) from an ultra-high resolution, synchrotron X-ray nano-holotomography (XNH) scan of the monkey splenium. From this, we discover a relationship between mean axon diameter and along-axon diameter variations. Monte Carlo simulations are then performed on the intra-axonal spaces (IAS) of different substrates which inherit their morphological features from the segmented axons. These simulations show that the OD significantly affects the transverse apparent diffusion coefficient (ADC) of the axon substrate at diffusion times up to 50 ms, while diameter variations do not.

This abstract and the presentation materials are available to members only; a login is required.

Join Here