Meeting Banner
Abstract #4165

High-resolution, low-SAR 3D T2 relaxometry with COMBINE

Peter J Lally1, Matthew Grech-Sollars2,3, Joely Smith3,4, Ben Statton5, Paul M Matthews1,6, Karla L Miller7, and Neal K Bangerter4
1Department of Brain Sciences, Imperial College London, London, United Kingdom, 2Department of Surgery and Cancer, Imperial College London, London, United Kingdom, 3Department of Imaging, Imperial College Healthcare NHS Trust, London, United Kingdom, 4Department of Bioengineering, Imperial College London, London, United Kingdom, 5MRC London Institute of Medical Sciences, London, United Kingdom, 6UK Dementia Research Institute Centre at Imperial College, London, United Kingdom, 7Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom

Here we describe a super-resolution 3D T2 relaxometry approach using an unbalanced SSFP acquisition with very low flip angle RF pulses (α ≤ 1°). We then apply this to obtain 1mm isotropic T2 maps in a reference phantom, and compare this to both the reference values and a 2D multi-echo spin echo approach. The proposed approach provides new options for high-resolution, low-SAR T2 relaxometry experiments in a range of tissues.

This abstract and the presentation materials are available to members only; a login is required.

Join Here