Meeting Banner
Abstract #0564

Hyperpolarized 13C MR Spectroscopic Imaging of Disease State in a Switchable MYC-Oncogene Model of Liver Cancer

Simon Hu1, Asha Balakrishnan2, Robert Bok1, Peder E. Larson1, Sarah J. Nelson1, John Kurhanewicz1, Andrei Goga2, Daniel B. Vigneron1

1Dept. of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States; 2Dept. of Medicine, Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA, United States


Development of hyperpolarized technology utilizing dynamic nuclear polarization has enabled the monitoring of 13C metabolites in vivo at very high SNR. In this work, hyperpolarized 13C 3D-MRSI was used to measure liver metabolism in mice after expression of the MYC proto-oncogene was switched on and then off in the liver. Mice in various disease stages were studied, and significant differences in hyperpolarized lactate and alanine levels were detected (P < 0.01). In addition, biochemical assays showed increased LDH expression and activity in the MYC-driven tumors.