Meeting Banner
Abstract #1167

Comparison of BOLD Response Modulation During Pain Stimulation and Resting-State Conditions Under Intravenous (0.2 Mg/70kg) or Sublingual (2 Mg) Buprenorphine Treatment

Jaymin Upadhyay1,2, Julie Anderson1,2, Adam J. Schwarz1,3, Richard Baumgartner1,4, Alexandre Coimbra1,5, Lauren Nutile1,2, James Bishop1,2, Ed George1,6, Brigitte Robertson1,7, Smriti Iyengar1,3, David Bleakman1,3, Richard Hargreaves1,5, Lino Becerra1,2, David Borsook1,2

1Imaging Consortium for Drug Development, Harvard Medical School, Belmont, MA, United States; 2P.A.I.N. Group; Brain Imaging Center, McLean Hospital, Belmont, MA, United States; 3Lilly Research Department, Eli Lilly and Company, Indianapolis, IN, United States; 4Biometrics Research Department, Merck Research Laboratories, Rahway, NJ, United States; 5Imaging Department, Merck Research Laboratories, West Point, PA, United States; 6Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; 7Sepracor, Inc., Marlborough, MA, United States


Buprenorphine is commonly prescribed to treat pain. We implemented blood oxygenated-level dependent (BOLD) functional MRI to characterize and compare the effects of 2.0 mg (sublingual), 0.1 mg/70kg (intravenous) and 0.2 mg/70kg (intravenous) doses of buprenorphine on the central nervous system during pain processing and during the resting state. During pain processing, the 2.0 mg (sublingual) and 0.2 mg/70kg (intravenous) doses significantly (p<0.01) potentiated the BOLD response in regions such as the striatum, while attenuated the BOLD response in somatosensory cortices. Furthermore, the resting-state connectivity for sublingual and intravenous doses of buprenorphine were also altered among structures that mediate pain processing.