Meeting Banner
Abstract #1222

Role of Nitrite in Neurovascular Coupling: Nitric Oxide-Dependent and Independent Mechanisms

Barbora Piknova1, Ara Kocharyan2, Alan N. Schechter1, Afonso C. Silva2

1National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States; 2National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States

In addition to classic role of vasodilator, nitric oxide (NO) also acts as a neurotransmitter. NO role in neurovascular coupling and the possibility to restore the proper brain hemodynamics after its impairment in various NO-deficiency related diseases is of major importance. We studied the fMRI response to forepaw stimulation on -chloralose anesthetized Sprague-Dawley rats at baseline, with NO production attenuated by nNOS inhibition and after NO and nitrite distribution. We found that exogenous NO and nitrite restore neurovascular response and that nitrite is more effective than direct NO donor. We hypothesize about additional vasodilatory pathways in case of nitrite metabolism.