Meeting Banner
Abstract #1601

Optimization of Body-Centered-Cubic Encoding Scheme for Diffusion Spectrum Imaging

Li-Wei Kuo1, Wen-Yang Chiang2, Fang-Cheng Yeh, 1,3, Van Jay Wedeen4, Wen-Yih Isaac Tseng1,5

1Center for Optoelectronic Biomedicine, National Taiwan University College of Medicine, Taipei, Taiwan; 2Center for Bioengineering and Bioinformatics, The Methodist Hospital Research Institute and Department of Radiology, The Methodist Hospital, Houston, TX, United States; 3Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States; 4MGH Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, United States; 5Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan

The present study investigated the optimum parameters for body-centered-cubic sampling scheme as well as its accuracy of mapping complex fiber orientations compared with grid sampling scheme of diffusion spectrum imaging. A systematic angular analysis was performed on in-vivo data simulation and verification studies. Ours results showed that body-centered-cubic sampling scheme provided an incremental advantage in angular precision over the grid sampling scheme. Further, the capacity of half-sampling schemes based on the concept of q-space symmetry was also demonstrated. By considering the efficiency, this study showed that body-centered-cubic and half-sampling schemes may be potentially helpful for future clinical applications.