Meeting Banner
Abstract #2458

Toward Reproducible Tract-Specific in Vivo Diffusion Quantification in Human Cervical Spinal Cord

Junqian Xu1, Eric C. Klawiter1, Joshua S. Shimony2, Abraham Z. Snyder, 12, Robert T. Naismith1, Agus Priatna3, Tammie Benzinger2, Anne Cross1, Sheng-Kwei Song2

1Neurology, Washington University in St. Louis, St. Louis, MO, United States; 2Radiology, Washington University in St. Louis, St. Louis, MO, United States; 3Siemens Medical Solution, United States


We describe a reproducible in vivo human cervical spinal cord diffusion tensor imaging (DTI) protocol at 3T. The data acquisition and analysis procedures are described with examples from healthy (n = 17) and pathological human spinal (n = 2) cords. The described comprehensive approach (1) accounts for the natural curvature of the human spinal cord by covering C1-6 with separate tiltable slices/groups, (2) minimizes distortion and signal drop-out by localized shimming, (3) improves the robustness by motion-correction and motion-based outlier rejection, (4) corrects negative eigenvalues by non-negative non-linear DTI calculation, and (5) employs objective geometry based region-of-interest selection for tract identification.

Keywords