Meeting Banner
Abstract #2901

High-Field MRI for Non-Invasive Preclinical Imaging in Free-Breathing Mice

Prachi Pandit1,2, Yi Qi2, Kevin F. King3, G A. Johnson1,2

1Biomedical Engineering, Duke University, Durham, NC, United States; 2Center for In Vivo Microscopy, Duke University, Durham, NC, United States; 3GE Healthcare, Waukesha, WI, United States

The requirements for preclinical cancer imaging are high spatial resolution, good soft tissue differentiation, excellent motion immunity, and fast and non-invasive imaging to enable high-throughput, longitudinal studies. Here we describe a PROPELLER-based technique, which with its unique data acquisition and reconstruction overcomes the adverse effects of physiological motion, allows for rapid setup and acquisition and provides excellent tissue contrast. Hardware optimization as well as sequence modification enable us to obtain heavily T2-weighted images at high-fields in tumor-bearing mice with in-plane resolution of 117μm and slice thickness of 1mm. Multi-slice datasets covering the entire thorax and abdomen are acquired in ~40 minutes.