Fei Du1,2,
Qiang Xiong3, Xiao-Hong Zhu1, Wei Chen1
1Radiology, Center for Magnetic
Resonance Research, University of Minnesota, Minneapolis, MN, United States; 2Psychiatry,
Harvard Medical School, Belmont, MA, United States; 3Biomedical
Engineering, Center for Magnetic Resonance Research, University of Minnesota,
Minneapolis, MN, United States
The
chemical exchange reactions (PCr↔ATP↔Pi) catalyzed by the
creatine kinase (CK) and ATPase enzymes play key roles in maintaining brain
function. In vivo 31P-MRS combined with magnetization saturation transfer
(ST) provides a unique tool for assessing the reaction rate constants (kf).
The accurate quantification of kf usually requires a long repetition time (tr)
for approaching a steady-state saturation condition, however, suffers from
limited sensitivity for biomedical application. This problem could be
partially solved by shortening tr and allowing more signal averages. However,
the partial saturation effect independent of kf makes kf quantification more
complicate. Therefore, it is crucial to develop different approaches able to
rapidly measuring and quantifying CK and ATPase enzyme activities in vivo. In
this work, we present an improved magnetization ST approach, i.e.T1nom
approach, for correcting the partial saturation effect with short tr. The
results indicate a simple, linear relation between kf and the magnetization
ratio of control and saturated 31P spectra. This approach was tested in the
rat brain.
Keywords