Meeting Banner
Abstract #3704

Combined PCMRI and CFD Hemodynamics in a Flow-Model and in the Thoracic Aorta

Aurelien F. Stalder1,2, Zhenyu Liu3, Ramona Lorenz2, Juergen Hennig2,4, Jan Gerrit Korvink, 4,5, Michael Markl2

1Dept. of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China; 2Dept. of Diagnostic Radiology - Medical Physics, University Hospital, Freiburg, Germany; 3Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Science, Changchun, China; 4Freiburg Institute for Advanced Studies (FRIAS), Freiburg, Germany; 5Dept. of Microsystems Engineering, University of Freiburg, Germany


Both flow-sensitive 4D MRI and computational fluid dynamics (CFD) have successfully been applied to analyze complex 3D flow. However, both modalities suffer from limitations related to measurements (MRI) or model assumptions (CFD). In this study, we compared both modalities in a model in vitro and in the complex 3D blood flow of the thoracic aorta in vivo. Although discrepancies were observed, overall coherent patterns were observed. The further potential of the method is illustrated by calculating detailed Wall Shear Stress maps using very fine boundary layer mesh. The combination of 4D flow-sensitive MRI and CFD may be used to enhance the assessment of blood flow in vivo.