Meeting Banner
Abstract #0209

Joint Optimization of Tip-Down & Tip-Up RF Pulses in Small-Tip (Non-Spin-Echo) Fast Recovery Imaging

Jon-Fredrik Nielsen1, Daehyun Yoon2, Neal Anthony Hollingsworth3, Katherine Lynn Moody4, Mary Preston McDougall3,4, Steven M. Wright3,4, Douglas C. Noll1

1Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; 2Electrical Engineering & Computer Science, University of Michigan; 3Electrical & Computer Engineering, Texas A&M University; 4Biomedical Engineering, Texas A&M University

In fast-recovery (FR) or driven-equilibrium steady-state imaging, the magnetization is tipped back toward the longitudinal axis at the end of each repetition interval (TR), with the aim of maximizing the acquired signal. Conventional FR imaging requires one or more spin-echo refocusing pulses, and hence heavy RF deposition. With the use of parallel RF transmission and 3D RF pulse design, it may be possible to replace the conventional spin-echo pulse train with a small-tip excitation pulse followed by a small-tip recovery (tip-up) pulse. We present a simple and effective approach for jointly optimizing the excitation and recovery pulses such that the residual (unwanted) transverse magnetization after the tip-up pulse is minimized.