Meeting Banner
Abstract #2842

Line graphs and vector weights: a novel paradigm for brain network analysis

Peter Savadjiev 1 , Carl-Fredrik Westin 2 , and Yogesh Rathi 1

1 Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States, 2 Laboratory for Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States

Graph theoretical representations of brain networks model the organization of gray matter units. We introduce a novel Dual graph formalism, in which the role of edges and vertices is inverted relative to the original (Primal) graph. This transformation shifts the emphasis of brain network analysis from gray matter units to their underlying connections. It applies standard graph theoretical operations to discover the organization of connections, as opposed to gray matter centers. Furthermore, it facilitates the characterization of each connection by a vector of several features. This is one solution to the problem of vector weights in standard brain network analysis.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords