Meeting Banner
Abstract #1902

Arterial segmentation and visual stimulus-induced changes in diameter observed in the human brain

Alexandre Bizeau1,2, Guillaume Gilbert3, Minh Tung Huynh4, Michaël Bernier1,2, Christian Bocti5, Maxime Descoteaux2,6, and Kevin Whittingstall1,2,4

1Department of Radiation Sciences and Biomedical imagery, Université de Sherbrooke, Sherbrooke, QC, Canada, 2Centre d’Imagerie Moléculaire de Sherbrooke (CIMS), Centre de Recherche CHUS, Sherbrooke, QC, Canada, 3MR Clinical Science, Philips Healthcare, Markham, ON, Canada, 4Department of Diagnostic Radiology, Université de Sherbrooke, Sherbrooke, QC, Canada, 5Department of Medecine, Université de Sherbrooke, Sherbrooke, QC, Canada, 6Department of Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada

When undergoing stimulation, neurons need to be supplied with oxygen and glucose. This demand then induces vasodilation generated by the astrocytes which act on the muscles of the arteries of the human brain. Using time-of-flight magnetic resonance angiography acquisitions, we extracted the apparent diameter of arterial vessels. We then compared diameter with and without visual stimulation and demonstrated that smaller vessels dilate proportionally more than larger ones in the posterior cerebral arteries. Using this method, the investigation of the coupling between neural activity and regional cerebral vasodilation, also called functional hyperhemia, is now possible.

This abstract and the presentation materials are available to members only; a login is required.

Join Here