Meeting Banner
Abstract #2003

Inferring axon diameter from the apparent cylindrical geocentric diameter in the longitudinal plane

Farshid Sepehrband1 and Kristi A Clark1

1Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, United States

Recent diffusion-weighted imaging techniques have enabled the inference of axon diameter, a valuable neuroanatomical measure1,2. Current techniques fit a cylindrical model of axons to the acquired signal, primarily in the transverse direction. Despite many improvements, sensitivity to small axons is difficult to achieve, primarily due to the scanner’s physical limitations. Even with a strong gradient strength system such as the connectome scanner and high SNR, the minimum resolvable axon diameters are greater than 2μm, which accounts for only a small proportion of axons in the human brain. Here we utilize Neuman’s cylindrical model3, and generalize it to the geocentric direction in the longitudinal plane of axons (Figure 1) to decrease the minimum axon diameter resolvable with a given scanner.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords