Meeting Banner
Abstract #2183

RF field penetrability study of an electrically floating PET insert for simultaneous PET/MRI

Brian J Lee1,2, Ronald D Watkins1, Chen-Ming Chang1,3, and Craig S Levin1,4,5,6

1Radiology, Stanford University, Stanford, CA, United States, 2Mechanical Engineering, Stanford University, Stanford, CA, United States, 3Applied Physics, Stanford University, Stanford, CA, United States, 4Physics, Stanford University, Stanford, CA, United States, 5Electrical Engineering, Stanford University, Stanford, CA, United States, 6Bioengineering, Stanford University, Stanford, CA, United States

We have developed a RF-penetrable PET insert for simultaneous PET/MRI and investigated the RF-penetrability with MR experiments and electromagnetic simulations. We have shown that the RF field from the MR body coil penetrates through the inter-module gaps and the ends of the PET insert. We found that ~60% of the RF field transmitted through the ends contributes to the B1 magnitude while the RF field entering through the gaps improves the uniformity provided the ends are also opened. The simulations also show that either shortening the length/height of the modules, or widening the gaps enhances the RF-penetrability by ~16%.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords