Meeting Banner
Abstract #2593

Energy loss and turbulent formations reveal the pressure loss in coarctation flows: A novel 4D Flow MRI-Based quantification method using a finite element approach

Julio Sotelo1,2,3, Jesús Urbina1,4, Cristian Montalba1, Israel Valverde5,6, Cristian Tejos1,2,7, Pablo Irarrazaval1,2,7, Marcelo Andia1,4,7, Daniel E Hurtado3,7, and Sergio Uribe1,4,7

1Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, Chile, 2Electrical Engineering Department, Pontificia Universidad Catolica de Chile, Santiago, Chile, 3Structural and Geotechnical Engineering Departement, Pontificia Universidad Catolica de Chile, Santiago, Chile, 4Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile, 5Pediatric Cardiology Unit, Hospital Virgen del Rocio, Seville, Spain, 6Cardiovascular Pathology Unit, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, Seville, Spain, 7Biological and Medical Engineering Institute, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile

Aortic coarctation (CoA) cause an irreversible pressure loss post-CoA given by the energy dissipation, increasing the ventricular workload. Turbulent flows through CoA generate an irreversible damage in the surrounding tissue for mechanical stresses. We implement a finite elements method to obtain 3D maps of energy loss, kinetic energy, vorticity and helicity from 4D flow data. We performed an in-vitro study that related the pressure gradient, pulse wave velocity and elastic modulus with the energy loss and vorticity and helicity parameters. Concluding that our method may allow assessing the severity of the CoA and the identification of the regions affected.

This abstract and the presentation materials are available to members only; a login is required.

Join Here