Meeting Banner
Abstract #3206

Modelling intra-voxel dephasing in MR simulations

Stefan Kroboth1, Katharina E. Schleicher1, Kelvin J. Layton1, Axel J. Krafft1,2,3, Klaus Düring4, Feng Jia1, Sebastian Littin1, Huijun Yu1, Jürgen Hennig1, Michael Bock1, and Maxim Zaitsev1

1Medical Physics, University Medical Center Freiburg, Freiburg, Germany, 2German Cancer Consortium (DKTK), Heidelberg, Germany, 3German Cancer Research Center (DKFZ), Heidelberg, Germany, 4MaRVis Medical GmbH, Hannover, Germany

In order to capture intra-voxel dephasing in simulations, the object has to be modeled with a very large number of spins per voxel. We present a method to improve and speed up simulations by explicitly modelling intra-voxel dephasing. The method is evaluated by simulating an MR-safe guidewire. The iron particles in the wire create dipole fields, which lead to dephasing in the proximity of the wire. We show that a substantial reduction of the required number of spins by a factor of ~5.4 is possible, without sacrificing image quality. This reduces the memory requirements and speeds up simulations.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords