Meeting Banner
Abstract #3759

Long-term and acute cannabis effects on brain networks

Isabelle Berger1,2,3, Philippe Maeder1, Jean-Marie Annoni4, Haithem Chtioui5, Christian Giroud6, Bernard Favrat7, Kim Dao5, Marie Fabritius6, Jean-Frédéric Mall8, Giovanni Battistella1,9, Reto Meuli1, and Eleonora Fornari1,2

1Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), and University of Lausanne, Lausanne, Switzerland, 2CIBM (Centre d'Imagerie Biomédicale), Centre Hospitalier Universitaire Vaudois (CHUV) unit, Lausanne, Switzerland, 3Department of Neurology, Besancon University Hospital, Besançon, France, 4Neurology Units, Department of Medicine, University of Fribourg, Fribourg, Switzerland, 5Department of Clinical Pharmacology and Toxicology, Centre Hospitalier Universitaire Vaudois CHUV, Lausanne, Switzerland, 6CURML (University Center of Legal Medicine), UTCF (Forensic Toxicology and Chemistry Unit), Lausanne, Switzerland, 7CURML (University Center of Legal Medicine), UMPT (Unit of Psychology and Traffic Medicine), Lausanne, Switzerland, 8Department of Psychiatry, SUPAA (Service Universitaire de Psychiatrie de l'Age Avancé), CHUV, Lausanne, Switzerland, 9Department of Neurology, Icahn School of Médicine at Mount Sinai, New York, NY, United States

The purpose of our study was to reveal the changes in functional networks due to chronic and acute cannabis use, and to highlight the anterior insula specific involvement. We explored changes in functional connectivity by means of ICA and seed-based methods. Long-term cannabis use leads to an attenuation of the engagement of the Salience Network regions. The further decrease of activity after acute consumption can reflect the decrease of subject awareness in their performances, or a modulation of networks interplay. Modifications revealed by seed-based connectivity analysis support and clarify the insular role in cannabis addiction.

This abstract and the presentation materials are available to members only; a login is required.

Join Here