Meeting Banner
Abstract #4298

Optimizing MRI contrast with optimal control theory

Eric Van Reeth1, Hélène Ratiney1, Michael Tesch2, Steffen Glaser2, and Dominique Sugny3

1CREATIS, Université de Lyon ; CNRS UMR5220 ; Inserm U1044 ; INSA-Lyon ; Université Claude Bernard Lyon 1, Lyon, France, 2Department of Chemistry, Technische Universität München, Munich, Germany, 3Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 5209 CNRS-Université de Bourgogne, Dijon, France

Magnetic Resonance Imaging (MRI) uses the difference in tissue relaxation times to create contrast. Various image weightings can be obtained by tuning acquisition parameters which are usually empirically defined. In this article, optimal control theory is used to design excitation pulses that produce the optimal contrast between given tissues. The designed pulses are tested on numerical phantoms with and without magnetic field inhomogeneities and for the first time in vitro on a small-animal MRI. The reasonable match between simulation and real experiments is promising for the development of such pulses in further in vivo applications.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords