Meeting Banner
Abstract #0692

Multi-modal Isointense Infant Brain Image Segmentation with Deep Learning based Methods

Dong Nie1,2, Li Wang1, Roger Trullo1, Ehsan Adeli1, Weili Lin1, and Dinggang Shen1

1Department of Radiology and BRIC, UNC-Chapel Hill, USA, Chapel Hill, NC, United States, 2Department of Computer Science, UNC-Chapel Hill, USA, Chapel Hill, NC, United States

Accurate segmentation of infant brain images into different regions of interest is one of the most important fundamental steps in studying early brain development. In this paper, we propose a framework based on the recently well-received and prominent deep learning methods. Specifically, we propose a novel 3D multimodal fully convolutional network (FCN) architecture for segmentation of isointense phase brain MR images. Our proposed framework can model the brain tissue structures more accurately compared to the traditional methods. The conducted experiments show that our proposed 3D multimodal FCN model outperforms all previous methods by a large margin, in terms of segmentation accuracy.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords