Meeting Banner
Abstract #0955

Selection of node-based graph metrics to predict symptom severity in mild traumatic brain injury (mTBI) using recursive feature elimination

Bharath Ram Sundar1, Hariharan Ravishankar1, Suresh E Joel1, Luca Marinelli2, Teena Shetty3, Pratik Mukherjee4, Joseph Masdeu5, Rakesh Mullick1, and Radhika Madhavan1

1GE Global Research, Bangalore, Karnataka, India, Bangalore, India, 2GE Global Research, Niskayuna, NY, 3Hospital for Special Surgery, New York City, NY, 4University of California, San Francisco, CA, 5Houston Methodist, Houston, TX

Recursive feature elimination (RFE), a machine learning technique, is used to sub-select node-based graph theoretical features that correlate with symptom severity in mTBI. Resting state functional connectivity was represented as a binary graph by thresholding correlation values computed between time courses of functional ROIs. Node-based graph theoretical metrics were computed and fed to the feature elimination model to regress on mTBI symptom scores. Using RFE we identified top features correlated to symptom severity in mTBI, which include eigen centrality and closeness of nodes within the salience and default-mode networks. Top features were analyzed for repeatability over multiple runs and multiple thresholds.

This abstract and the presentation materials are available to members only; a login is required.

Join Here