Turbo Spin-Echo sequences (TSE) are frequently characterized by high local specific absorption rate (SAR), a limiting factor for their application. Here we show that the direct signal control (DSC) framework can drastically reduce the local SAR response of a TSE sequence by expanding the search-space for the amplitude and phase RF weights. A solution is found which enforces optimal contrast behavior and local SAR limits across different shim settings. A cardiac exam at 3 Tesla MRI is used as simulated test case.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords